KING'S MATHS SCHOOL

Start as they need to go on

Developing algebra skills for A level success

Please

- change your Zoom name to "Full name, School"
- Keep your video on but microphone off
- Have a paper and pencil, or something more modern!, to hand
- Tell us in the Chat: "my favourite BBQ dish is

My objectives

To suggest

- topics
- examples
- rationale
to support and inform your construction of a "Core skills in Algebra" development / consolidation programme for Y 12 A-level mathematicians that will prepare them well for Y13 success.

Trouble ahead!

1. What are the coordinates of the turning points of the curve $y=\frac{x^{2}+1}{\sqrt{x^{4}+1}}$?
2. What is the general solution of $\frac{d y}{d x}=\frac{y}{x}$?
3. A particle of mass 5 kg is suspended by two light strings at angles of 40° and 70° to the horizontal, and also a force 20 N acts horizontally. Work out the tension in each string.

ALL students must

ALL students must

become FLUENT in the
fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately justification or proof using mathematical language.

ALL students must

SOLVE PROBLEMS by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Routine and non-routine

Today

- Factorising
- Simultaneous equations
- Indices \& logarithms
- Algebraic fractions
- "Algebra-tisation"

Next week

- Inequalities
- Completing the square
- Etc.

In conclusion

- "Unfinished business" leads to "trouble ahead"
- General tactics \& Specific strategies
- Desirable difficulty, productive struggle
- Get the maths from them
- Accommodate don't assimilate

Factorising

"Factorise $x^{2}+5 x-14$ " at GCSE
"Factorise $x^{3}+3 x-14$ " at A level

Factorising

- Factorise $x^{3}-19 x+30$
- Factorise $x^{3}-6 x-9$
- What is the remainder when $x^{4}+3 x^{3}+5$ is divided by $x+2$?
- What is the remainder when $x^{4}+3 x^{3}+5$ is divided by $x+2$?

Factorising

Simplify

- $81(x+y)^{2}-16(x-y)^{2}$
- $(x-3+\sqrt{2})(x-3-\sqrt{2})$

Factorising

Factorise

- $4 x^{-2}-x^{-3}$
- $4 x^{\frac{1}{2}}-(4 x)^{-\frac{1}{2}}$

Factorising

Factorise

- $4 x^{-2}-x^{-1}-3$
- $(2 x)^{-2}-(4 x)^{-1}-3$

Simultaneous eqns

"Solve these simultaneous equations" at GCSE

$$
\begin{gathered}
2 x-3 y=5 \\
3 x+4 y=16
\end{gathered}
$$

$$
\begin{gathered}
x^{2}+y^{2}=40 \\
x-y=4
\end{gathered}
$$

Simultaneous eqns

"Solve these simultaneous equations" at A level
$2 x^{2}-3 y^{2}=5$
$3 x^{2}+4 y^{2}=16$
$\sqrt{2} x-\sqrt{3} y=9$
$4 x+\sqrt{6} y=9 \sqrt{2}$
$T \cos 40^{\circ}-S \cos 70^{\circ}=20$

- $T \sin 40^{\circ}+S \sin 70^{\circ}=49$

Simultaneous eqns

Solve
$x^{2}+y^{2}=13$
$2 x+y=4$
. $x^{2}+y^{2}=13$

$$
3 x+2 y=5
$$

$3 x^{2}+2 y^{2}=35$
$2 x-3 y=12$

Simultaneous eqns

Solve
$x^{2}+x y+y^{2}=7$
$3 x+2 y=5$

$$
\begin{aligned}
& x^{2}+y^{2}=13 \\
& x^{4}+y^{4}=97
\end{aligned}
$$

Algebraic fractions

Simplify

- $2 x^{-3}+3 x^{-3}$
- $2 x^{-3}+3 x^{-2}$
- $(2 x)^{-3}+(3 x)^{-2}$

Algebraic fractions

Simplify

- $(x+1)^{\frac{1}{2}}-(x+1)^{-\frac{1}{2}}$
- $(9 x+9)^{\frac{3}{2}}-x(4 x+4)^{\frac{1}{2}}$

Algebraic fractions

Solve

- $2 x\left(x^{4}+1\right)^{-0.5}-2 x^{3}\left(x^{2}+1\right)\left(x^{4}+1\right)^{-1.5}=0$

Algebraic fractions

Simplify

- $\frac{3 x^{2}-4 x^{5}}{x^{4}}$
- $\frac{4 x+5}{3 x}$
- $\frac{2 x^{2} \sqrt{x}+9 x}{\sqrt{3 x^{3}}}$

Algebraic fractions

Simplify

- $\frac{x^{2}}{x+1}$
$\frac{x^{2}+1}{x+1}$
$\frac{x^{2}+3 x}{x+1}$

Indices

Simplify

- $\sqrt{36 x^{36}}$
- $\sqrt[3]{216 y^{216}}$
- $(3 x)^{-2} \times 2 x^{-3}$
- $3 x^{-2} \div(2 x)^{-3}$

Indices

If $2^{a}=9$, evaluate

- 2^{a+2}
- 2^{-a}
- $2^{\frac{a}{2}}$
- 4^{a-1}

\& logarithms

If $a=\log _{2} 9$, simplify

- 2^{a}
- 4^{-a}

Express in terms of a

- $\log _{2} 18$
- $\log _{2} \frac{8}{9}$
- $\log _{4} 3$

\& logarithms

If $a=\frac{1}{2} \log _{2} 6$, simplify

- $12 \div 2^{a}$
- $\frac{4 a+1}{4 a-1}$
- $\frac{4^{a}+4^{-a}}{4^{a}-4^{-a}}$

\& logarithms

If $a=\sqrt{e}$ and $b=-\ln 4$, simplify

- $a \ln a$
- $b-\ln 2$
- $\ln \left(\frac{1}{a^{2}}\right)+\frac{1}{(\ln a)^{2}}$
- $e^{\frac{1}{2} b}$
- $\frac{a^{2}}{1-\ln a}$

How we learn

When a new concept is encountered, in order for learning to take place, one of two things must happen:
either

- the new idea is connected to and incorporated into the learner's existing framework of knowledge (assimilation)
or
- existing knowledge structures must be extended / reorganised (accommodation).

Richard Skemp, 1976 \& 1986

How we learn

Area $=20 \mathrm{~cm}^{2}$
Base $=5 \mathrm{~cm}$
Height = ?

How we learn

Area $=10 \mathrm{~cm}^{2}$
Base $=5 \mathrm{~cm}$
Height = ?

$$
\begin{aligned}
& \text { Area }=20 \mathrm{~cm}^{2} \\
& \text { Base }=5 \mathrm{~cm} \\
& \text { Height }=?
\end{aligned}
$$

Assimilatio
n

How we learn

KING'S MATHS SCHOOL

Area $=10 \mathrm{~cm}^{2}$
Base $=5 \mathrm{~cm}$
Height = ?
Assimilatio

$$
\begin{aligned}
& \text { Area }=20 \mathrm{~cm}^{2} \\
& \text { Base }=5 \mathrm{~cm} \\
& \text { Height }=?
\end{aligned}
$$

Area $=25 \mathrm{~cm}^{2}$ Height = ?

How we learn

$3 \times a$
$3(a+b)$
3×4

Assimilatio

How we learn

KING'S MATHS SCHOOL

$3 \times a$
$3(a+b)$
3×4

$$
\begin{gathered}
\sin (a+b) \\
\ln (a+b)
\end{gathered}
$$

Assimilatio

How we learn

KING'S MATHS SCHOOL

$3 \times a$
$3(a+b)$
3×4

Assimilatio n

$$
\begin{gathered}
\sin (a+b) \\
\ln (a+b)
\end{gathered}
$$

Accommodation

How we learn

So, for teaching to result in meaningful learning, we need to know students' prior knowledge.

Vygotsky's idea of zone of proximal development (ZPD) is helpful here. ZPD is "the distance between where the student is on their own, and where they can get to with the help of a more knowledgeable other ... learning things that are just beyond where their current understanding is".

Vygotsky, 1962

Algebra-tisation

8 Without using a calculator, work out the exact values of
a) $\frac{101^{2}-1}{102}$
b) $\frac{101^{2}-1}{25}$
c) $\frac{101^{4}-101^{2}}{101^{3}-101^{2}}$

9 Person X donates 10\% of their salary each month to charity. Person Y donates 20\% of their salary each month to charity. The amount Y donates is 50% more than the amount X donates. What percentage increase in $Y^{\prime} s$ salary will make it equal to X^{\prime} s salary?

KING'S MATHS SCHOOL

$10 \quad A$ and B share a whole number of $£$. They each get a whole number of $£$, and then A gives $B £ 10$. The ratio of their shares is now $3: 2$. How much might they each now have?

In conclusion

- "Unfinished business" leads to "trouble ahead"
- General tactics \& Specific strategies
- Desirable difficulty, productive struggle
- Get the maths from them
- Accommodate don't assimilate

