# Start as they need to go on 

Developing graph skills for A level success

## Please

- change your Zoom name to "Full name, School"
- keep your video on but microphone off
- Have a paper and pencil, or something more modern!, to hand
- Tell us in the Chat: "My favourite chocolate is


## My objectives

To suggest

- topics
- examples
- rationale
to support and inform your construction of a Y12 "Core Ideas in Graphs" curriculum thread that will prepare your students well for Y13 success.


## ALL students must



## ALL students must

become FLUENT in the
fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately justification or proof using mathematical language.

## ALL students must

SOLVE PROBLEMS by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

## Routine and non-routine

- Completing the Square
- Sketching graphs
- Intersecting graphs
- Inequalities
- Transforming graphs
- (and some lovely circle stuff $\square$ )


# In conclusion 

- "Unfinished business" leads to "trouble ahead"
- General tactics \& Specific strategies
- Desirable difficulty, productive struggle
- Get the maths from them
- Accommodate don't assimilate


## $\because$ In conclusion

- "Un adb
ahea
Graphs are
- G representatio


## ns <br> of functions

ggle

- Get the maths on the
- Accommodate don't assimilate

- Accommodate don't assimilate


## Completing the square

What is the minimum value of these functions?

- $x: \rightarrow x^{2}-8 x-2$
- $x: \rightarrow x^{4}-8 x^{2}-2$
- $x: \rightarrow x^{4}+8 x^{2}-2$
- $x: \rightarrow x^{6}+8 x^{3}-2$
- $x: \rightarrow \sin ^{2} x+8 \sin x-2$


## Completing the square

Hence sketch the graphs representing the functions

- $x: \rightarrow x^{2}-8 x-2$
- $x: \rightarrow x^{4}-8 x^{2}-2$
- $x: \rightarrow x^{4}+8 x^{2}-2$


## Not-completing the ...

... factorisation: what are the coordinates of the vertex of the graph representing the functions

- $x: \rightarrow x^{2}-8 x-2$
- $x: \rightarrow 2 x^{2}-x-1$
- $x: \rightarrow-x^{2}+3 x+3$


## "Choose wisely"

Sketch the graphs representing the following functions. State the coordinates of the $y$ intercept and choose whether to state the coordinates of the $x$-intercept(s) or the vertex:

- $x: \rightarrow x^{2}+6 x+9$
- $x: \rightarrow x^{2}+6 x+7$
- $x: \rightarrow x^{2}+7 x+6$


## "Choose wisely"

Sketch the graphs representing the following functions. State the coordinates of the $y$ intercept and choose whether to state the coordinates of the $x$-intercept(s) or the vertex:

- $x: \rightarrow(x+3)^{2}+9$
- $x: \rightarrow 9-(x+3)^{2}$
- $x: \rightarrow 2(x+3)^{2}-9$


## "Thinking backwards"

Give the equation of the quadratic graphs with the properties stated:

- The graph crosses the $x$-axis at $(2,0)$ and $(-3$, $0)$. It has $y$-intercept at ( $0,-12$ ).
- The graph crosses the $x$-axis at $(1,0)$ and $(4$, $0)$. It has $y$-intercept at $(0,-4)$.
- The graph touches the $x$-axis at $(-2,0)$. It has $y$-intercept at (0, 12).


## "Thinking backwards"

Give the equation of the quadratic graphs with the properties stated:

- The graph has its vertex at $(-3,5)$. It has $y$ intercept at (0, 14).
- The graph has its vertex at $(1,-4)$. It has $y$ intercept at $(0,-2)$.
- The graph has its vertex at $(2,7)$. It has $y$ intercept at $(0,3)$.


## "Thinking backwards"

| Equation of line | $y$-intercept | gradient | $x$-intercept |
| :---: | :---: | :---: | :---: |
| $y=4 x-7$ | $(0,-7)$ | 4 | $\left(1 \frac{3}{4}, 0\right)$ |
| $5 y=2 x-4$ |  |  |  |
| $4 y+x+6=0$ |  | 2 |  |
|  | $(0,-3)$ | $\frac{2}{3}$ |  |
|  | $(0,3)$ |  | $(2,0)$ |
|  | $(0,-4)$ | $-\frac{4}{5}$ | $(-2,0)$ |

## "Thinking backwards"

$4 \quad$ A line has gradient $-\frac{1}{2}$. $(5,2)$ is a point on the line.
Complete the coordinates of these points which are also on the same line:
a)
$(9, \ldots)$
b) $(-4, \ldots)$
c)
(__,
$,-2)$

## "Thinking sideways"

Work out the area of the triangle with vertices at

- $(-2,0),(3,5)$ and $(4,-2)$.


## Cubic graphs

State the coordinates of the $y$-intercept and work out the $x$-intercept(s) of the graphs representing the following functions:

- $x: \rightarrow x^{3}-2 x^{2}-11 x+12$
- $x: \rightarrow x^{3}-14 x-8$
- $x: \rightarrow x^{3}-8 x^{2}+20 x-16$
- $x: \rightarrow x^{3}-8 x^{2}+21 x-20$
- $x: \rightarrow x^{3}-6 x^{2}+11 x-12$
- $x: \rightarrow x^{3}-6 x^{2}+12 x-16$


## Cubic graphs

Determine the coordinates

- where $y=-8$ on $y=x^{3}-6 x^{2}+12 x-16$
- which satisfy both $y=x^{3}-6 x^{2}+11 x-12$ and $y=2 x-8$
- which satisfy both $y=x^{3}-6 x^{2}+11 x-12$ and $y=-x-4$


## Inequalities

Sketch the graph representing the function:

- $x: \rightarrow 4 x+6$

Work out

- the exact value of $x$ that satisfies $4 x+6=11$
- the range(s) of values of $x$ that satisfy
- $4 x+6<11$
- $4 x+6>2$


## Inequalities

Sketch the graph representing the function:

- $x: \rightarrow x^{2}+4 x+6$

Work out

- the exact values of $x$ that satisfy $x^{2}+4 x+6=$ 3
- the range(s) of values of $x$ that satisfy
- $x^{2}+4 x+6>6$
- $x^{2}+4 x+6<11$
- $x^{2}+4 x+6>2$


## Inequalities

Sketch on the same axes the graphs representing the functions:

- $x: \rightarrow x^{2}$
- $x: \rightarrow 9$

Write down

- the exact values of $x$ that satisfy $x^{2}=9$
- the range(s) of values of $x$ that satisfy $x^{2}>9$

Agree or challenge: " $x^{2}>9 \Rightarrow x>3$ or $x>-3$ "

## Inequalities

Sketch on the same axes the graphs representing the functions:

- $x: \rightarrow x^{2}$
- $x: \rightarrow 3 x$

Write down

- the exact values of $x$ that satisfy $x^{2}=3 x$
- the range(s) of values of $x$ that satisfy $x^{2}>$ $3 x$
Agree or challenge: " $x^{2}>3 x \Rightarrow x>3$ "


## Inequalities

Sketch on the same axes the graphs representing the functions:

- $x: \rightarrow \frac{4}{x}$
- $x: \rightarrow x$

Write down

- the exact values of $x$ that satisfy $\frac{4}{x}=x$
- the range(s) of values of $x$ that satisfy $\frac{4}{x}<x$ Agree or challenge: " $\frac{4}{x}<x \Rightarrow x^{2}>4 \Rightarrow x>2$ or $x<$ $-2^{\prime \prime}$


## Inequalities

Sketch on the same axes the graphs representing the functions:

- $x: \rightarrow 0.5 x^{3}$
- $x: \rightarrow x^{2}$

Write down

- the exact values of $x$ that satisfy $x^{2}=0.5 x^{3}$
- the range(s) of values of $x$ that satisfy $x^{2}>$ $0.5 x^{3}$
Agree or challenge: " $x^{2}>0.5 x^{3} \Rightarrow 1>0.5 x \Rightarrow x<$ 2"


## Transforming graphs

Sketch the graphs representing the functions:

- $x: \rightarrow x^{2}$ and $x: \rightarrow(x-2)^{2}$
- $x: \rightarrow x^{2}$ and $x: \rightarrow(x-2)^{2}+3$
- $x: \rightarrow x^{2}$ and $x: \rightarrow x^{2}-4 x+1$


## Transforming graphs

Sketch the graphs representing the functions:

- $x: \rightarrow x^{2}$ and $x: \rightarrow x^{2}-4 x+1$
- $x: \rightarrow x^{2}$ and $x: \rightarrow-x^{2}+4 x-1$
- $x: \rightarrow x^{2}$ and $x: \rightarrow x^{2}+4 x+1$
- $x: \rightarrow x^{2}$ and $x: \rightarrow 4 x^{2}-8 x+1$


## Transforming graphs

Sketch the graphs representing the functions:

- $x: \rightarrow x^{3}$ and $x: \rightarrow(2 x)^{3}+1$
- $x: \rightarrow x^{3}$ and $x: \rightarrow(-2 x)^{3}+1$
- $x: \rightarrow x^{3}$ and $x: \rightarrow 2 x^{3}+1$


## Transforming graphs

Sketch the graphs representing the functions:

- $x: \rightarrow \frac{1}{x}$ and $x: \rightarrow \frac{1}{x}+2$
- $x: \rightarrow \frac{1}{x}$ and $x: \rightarrow \frac{1}{x+2}+2$
- $x: \rightarrow \frac{1}{x}$ and $x: \rightarrow \frac{2}{x+2}+1$
- $x: \rightarrow \frac{1}{x}$ and $x: \rightarrow \frac{3 x+4}{x+2}$


## Transforming graphs

Sketch the graph representing the function:

- $x: \rightarrow f(x)$ where $f(x)=6 x-x^{2}$

Now express each of these in terms of $f$, and hence sketch the graph of each function:

- $x: \rightarrow 6(x+2)-(x+2)^{2}$
- $x: \rightarrow-6 x-x^{2}$
- $x: \rightarrow 5+12 x-4 x^{2}$


## Transforming graphs

Sketch the graph representing the function:

- $x: \rightarrow f(x)$ where $f(x)=x(x-4)$

Now express each of these in terms of $f$, and hence sketch the graph of each function:

- $x: \rightarrow x^{2}-2 x-3$
- $x: \rightarrow 16 x(x-1)$
- $x: \rightarrow(x-8)(x+4)$
- $x: \rightarrow(x-8)(x-4)$



## Intersecting circles

## KING'S MATHS SCHOOL

9 Do the two circles

- one with equation $x^{2}+y^{2}=36$
- one with centre $(6,8)$ and radius 4
intersect at two different points, touch at one point, or not intersect at all?


## Intersecting circles

Find the intersection(s) of

- $x^{2}+y^{2}-2 x-8=0$
- $x^{2}+y^{2}-12 x+20=0$


## Intersecting circles

Find the intersection(s) of

- $x^{2}+y^{2}-2 x-8=0$
- $x^{2}+y^{2}-12 x+20=0$



## Intersecting circles

Find the intersection(s) of

- $x^{2}+y^{2}-2 x-8=0$
- $x^{2}+y^{2}-16 x+48=0$


## Intersecting circles

Find the intersection(s) of

- $x^{2}+y^{2}-2 x-8=0$
- $x^{2}+y^{2}-16 x+48=0$



## Intersecting circles

Find the intersection(s) of

- $x^{2}+y^{2}-2 x-8=0$
- $x^{2}+y^{2}-20 x+84=0$


## Intersecting circles

Find the intersection(s) of

- $x^{2}+y^{2}-2 x-8=0$
- $x^{2}+y^{2}-20 x+84=0$



## The altitudes of a triangle

A triangle has vertices at $(-1,-6),(5,6)$ and $(11$, -2)
Verify that the three altitudes are concurrent (at the orthocentre).


# In conclusion 

- "Unfinished business" leads to "trouble ahead"
- General tactics \& Specific strategies
- Desirable difficulty, productive struggle
- Get the maths from them
- Accommodate don't assimilate




